Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation*
نویسندگان
چکیده
The purpose of this paper is to review our latest molecular dynamics (MD) simulation studies on the temperature and density dependence of the translational and reorientational motion in supercritical (SC) methanol. In the present treatment, Jorgensen’s [W. L. Jorgensen. J. Phys. Chem. A 102, 8641 (1998)] transferable potential model, tested in a recent MD study of hydrogen bonds in this fluid [M. Chalaris and J. Samios. J. Phys. Chem. B 103, 1161 (1999)], was employed to simulate the dynamics of the system. The simulations were performed in the canonical (NVT) ensemble along the isotherms 523, 623, and 723 K and densities corresponding to the pressures from 10 to 30 MPa. Several dynamical properties of the fluid have been obtained and analyzed in terms of appropriate time-correlation functions (CFs). With respect to the translational dynamics, the self-diffusion coefficients obtained have been used to test the applicability of the well-known Chapman–Enskog kinetic theory. We have found that the theoretical predictions for the self-diffusion coefficients are only in qualitative agreement with the MD results over the whole temperature and density range studied. Finally, the inspection of the reorientational CFs and their corresponding correlation times lead to the conclusion that the reorientational motion of the SC methanol molecules in the sample is anisotropic.
منابع مشابه
Solvation shell dynamics studied by molecular dynamics simulation in relation to the translational and rotational dynamics of supercritical water and benzene.
The solvation shell dynamics of supercritical water is analyzed by molecular dynamics simulation with emphasis on its relationship to the translational and rotational dynamics. The relaxation times of the solvation number (tau S), the velocity autocorrelation function (tau D), the angular momentum correlation function (tau J), and the second-order reorientational correlation function (tau 2R) a...
متن کاملCalculation of Physical Properties of the Methanol-Water Mixture Using Molecular Dynamics Simulation
In this study some properties ofthe methanol-water mixture such as diffusivity, density, viscosity, and hydrogen bonding were calculated at different temperatures and <span style="font-size: 10pt; colo...
متن کاملInvestigation of Monte Carlo, Molecular Dynamic and Langevin dynamic simulation methods for Albumin- Methanol system and Albumin-Water system
Serum Albumin is the most aboundant protein in blood plasma. Its two major roles aremaintaining osmotic pressure and depositing and transporting compounds. In this paper,Albumin-methanol solution simulation is carried out by three techniques including MonteCarlo (MC), Molecular Dynamic (MD) and Langevin Dynamic (LD) simulations. Byinvestigating energy changes by time and temperature (between 27...
متن کاملEnergy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations
Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...
متن کاملMolecular Dynamics Simulation of Water in Single WallCarbon Nanotube
The overall aim of this study is to calculate some water properties in the single wall carbon naotubes (SWCNT) and compare them to the bulk water properties to investigate the deviation of water properties inside the SWCNT from those in the bulk. Here some physical and transport properties of water molecules in the single wall carbon nanotube were reported by performing molecular dynamics (MD) ...
متن کامل